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Dynamic Non-Linear Data Structure

Access point through the root (i.e., pointer 
to the top-most node of the tree)

Each node may have none to many 
children.

Recursive: A tree is made of subtrees.

Search? 𝑂 log 𝑛 under reasonable 
assumptions. Otherwise 𝑂 𝑛 .
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Concepts & Operations
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• size() = 15
• isEmpty() = false
• root() = A
• parent(D) = B
• grandparent(O) = G
• sibling(D) = {E, F}
• children(E) = {I, J}
• isInternal(G) = true
• isExternal(M) = true
• isRoot(L) = false
• isLeaf(K) = true
• height() = 4
• height(G) = 2
• depth(B) = 1
• depth(A) = 0
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Binary Tree
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Every node has at most two children: 
left and right.

Example: G.left: K   and   G.right: L

Full binary tree: every node other than 
the leaves has two children. 

Complete binary tree: every level, 
except possibly the last one, is 
completely filled, and all nodes are as 
far left as possible.
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Height of a Binary Tree
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algorithm height(x:node) → ℤ
if x is null then

return -1
end if
lh ← height(x.left)
rh ← height(x.right)
return 1 + max(lh, rh)

end algorithm
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Size of a Binary Tree
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algorithm size(x:node) → ℤ≥0
if x is null then

return 0
end if
ls ← size(x.left)
rs ← size(x.right)
return 1 + ls + rs

end algorithm

size(A) = 14



Binary Tree Types

Full binary tree: Each node is 
either a leaf or has exactly two 
children.

Complete binary tree: All 
levels except possible the last 
are completely full, and the 
last one has all its nodes to the 
left side.



Max #nodes in a Binary Tree
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Q: Max number of nodes at level 𝑙 of a binary tree?
A: 2𝑙

Proof: 𝑃 𝑙 : The max number of nodes at level 𝑙
of a binary tree is 2𝑙.

Show 𝑃 0 : The root is at level 0. Max number of 
nodes is 20 = 1.

Assume 𝑃 𝑙 (i.e., the max number of nodes at 
level 𝑙 is 2𝑙).

Show 𝑃 𝑙 + 1 : Since in a binary tree every node 
has at most 2 children, the next level would have 
at most twice the number of nodes. That is, 2 ⋅
2𝑙 = 2𝑙+1 11



Max #nodes in a Binary Tree
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Q: Max number of nodes at level 𝑙 of a binary tree?
A: 2𝑙

Q: Max number of leaves in a binary tree?
A: 2ℎ, where ℎ is the height of the tree.

Q: Max number of nodes in a binary tree?
A:

෍

𝑖=0

ℎ

2𝑖 = 2ℎ+1 − 1
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Expression Tree
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We can represent arithmetic expressions 
using binary trees:

Example: Left tree represents:

𝑦 5 − 𝑥3 =
𝑥

2

Questions: 
• How do we know the expression it 

represents?
• How do we build one?

13



Preorder Traversal
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Visit a node before its descendants (NLR).

preorder(root) = A, B, D, H, E, I, J, M, N, C, G, K, L, O

14Reverse Preorder (NRL) also exists.

algorithm preorder(x:node)
if x is null then

return
end if
visit(x)
preorder(x.left)
preorder(x.right)

end algorithm



Inorder Traversal
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Visit a node after its left descendants and 
before its right descendants (LNR).

inorder(root) = H, D, B, I, E, M, J, N, A, C, K, G, O, L

15Reverse Inorder (RNL) also exists.

algorithm inorder(x:node)
if x is null then

return
end if
inorder(x.left)
visit(x)
inorder(x.right)

end algorithm



Postorder Traversal
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Visit a node after its descendants (LRN).

postorder(root) = H, D, I, M, N, J, E, B, K, O, L, G, C, A

16Reverse Postorder (RLN) also exists.

algorithm postorder(x:node)
if x is null then

return
end if
postorder(x.left)
postorder(x.right)
visit(x)

end algorithm



Levels Traversal
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Visit the nodes by their height in the tree.

levels(root) = A, B, C, D, E, G, H, I, J, K, L, M, N, O 17This traversal is also known as Breadth-First Search.

algorithm levels(x:node)
if x is null then

return
end if
let Q be an empty queue
Q.enqueue(x)
while Q is not empty do

n ← Q.dequeue()
visit(n)
if n.left is not null then

Q.enqueue(n.left)
end if
if n.right is not null then

Q.enqueue(n.right)
end if

end while
end algorithm



Expression Tree (Again)
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Q: How do we know the expression it 
represents?
A: Use preorder (prefix notation) or inorder
(infix notation, don’t forget the parenthesis).

Q: How do we build one?
A: From prefix notation, adapt Dijkstra’s 
algorithm for evaluating expressions.
tl;dr: Use two stacks (operands and 
operators). Create nodes and put them 
together accordingly.
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Balancing Matters!

Balanced
ℎ ∈ Θ log2 𝑛

Unbalanced
ℎ ∈ Θ 𝑛

Unbalanced
ℎ ∈ Θ 𝑛
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Full Binary Tree Facts

Let 𝑇 be a nonempty, full binary tree.

• If 𝑇 has 𝐼 internal nodes, the number of leaves is 𝐼 + 1
• If 𝑇 has 𝐼 internal nodes, the total number of nodes is 2𝐼 + 1
• If 𝑇 has a total of 𝑁 nodes, the number of internal nodes is 

(𝑁 − 1)/2
• If 𝑇 has a total of 𝑁 nodes, the number of leaves is (𝑁 + 1)/2
• If 𝑇 has 𝐿 leaves, the total number of nodes is 2𝐿 − 1
• If 𝑇 has 𝐿 leaves, the number of internal nodes is 𝐿 − 1

Proofs? Use induction on full binary trees.
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Do you have any questions?
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